
F. Sandoval et al. (Eds.): IWANN 2007, LNCS 4507, pp. 351–358, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Hybrid Evolutionary Algorithm with Product-Unit
Neural Networks for Classification

Francisco J. Martínez- Estudillo1, César Hervás-Martínez2,
Alfonso C. Martínez-Estudillo1, and Pedro A. Gutiérrez-Peña2

1 Department of Management and Quantitative Methods, ETEA, Spain
{fjmestud,acme}@etea.com

2 Department of Computing and Numerical Analysis of the University of Córdoba, Spain
chervas@uco.es

Abstract. In this paper we propose a classification method based on a special
class of feed-forward neural network, namely product-unit neural networks, and
on a dynamic version of a hybrid evolutionary neural network algorithm. The
method combines an evolutionary algorithm, a clustering process, and a local
search procedure, where the clustering process and the local search are only
applied at specific stages of the evolutionary process. Our results with the
product-unit models and the evolutionary approach show a very interesting
performance in terms of classification accuracy, yielding a state-of-the-art
performance.

Keywords: Classification, Product-Unit Neural Networks, Evolutionary
algorithms.

1 Introduction

We propose a classification method that combines a nonlinear model and a hybrid
evolutionary neural network algorithm that finds the optimal structure of the model
and estimates the corresponding parameters. The hybrid algorithm combines a
clustering process and a local search procedure, where the clustering process and the
local search are only applied at specific stages of the evolutionary process. The
underlying idea is that we can achieve a very good performance if, instead of
optimizing many very similar individuals in the final generation, we explore different
regions of the search space visited by the algorithm throughout its evolution. The
proposed non-linear model corresponds to a special class of feed-forward neural
network, namely product-unit neural networks, PUNN, introduced by Durbin and
Rumelhart [1]. They are an alternative to sigmoidal neural networks and are based on
multiplicative nodes instead of additive ones.

The algorithm proposed evolves both the weights and the structure of the network
using evolutionary programming. It is usually very difficult to know beforehand the
most suitable structure of the network for a given problem; however, the evolution of
the structure partially alleviates this problem. It is well known that evolutionary
algorithms (EA) are efficient at exploring an entire search space; however, they are
relatively poor at finding the precise optimum solution in the region in which the

352 F.J. Martínez- Estudillo et al.

algorithm converges. The hybrid algorithm combines the EA (global explorer) and the
local optimization procedure (local exploiter). The cluster process creates a group of
mutually close points that could correspond to relevant regions of attractions, and
finally, the local search procedure enables us to improve the performance of the
selected individuals in the cluster process. The purpose of the dynamic version is to
gather into one set the best solutions the evolutionary algorithm finds in the
exploration of the search space at different stages. Another feature of our approach is
that the optimized individuals are not included in the new population. Once the
optimization algorithm is applied, we think that any further modification of the
individual would be counter-productive. So, these individuals are stored in a separate
population till the end of the evolutionary algorithm. Moreover, we do not use the
crossover operator because this operation is usually regarded as being less effective
for network evolution. We evaluate the performance of our methodology in four data
sets taken from the UCI repository. This paper is organized as follows: Section 2 is
dedicated to a description of the product-unit model: Section 3 describes the hybrid
evolutionary algorithm; Section 4 includes the experimental results and, finally,
Section 5 summarizes the conclusions of our work.

2 Product-Unit Neural Networks Classifiers

In this section we present the family of product-unit basis functions used in the
classification process and its representation by means of a neural network structure.
PUNN are built with basis functions (1) that express the possible strong interactions
between the variables, where the exponents may even take on real values and are
suitable for automatic adjustment:

1

ji

k
w

j i
i

y x
=

= ∏ (1)

k being the number of inputs. Some advantages of product-unit based neural
networks are its increased information capacity and the ability to form higher-order
input combinations. Besides that, it is possible to obtain the upper bounds of the VC
dimension in product-unit neural networks similar to those obtained in sigmoidal
neural networks [2]. Finally, it is a straightforward consequence of the Stone-
Weierstrass Theorem to prove that product-unit neural networks are universal
approximators [3]. Despite these advantages, product-unit based networks have a
major drawback. Networks based on product units have more local minima and more
probability of getting trapped in them [4]. The main reason for this difficulty is that
small changes in the exponents can cause large changes in the total error surface.
Because of this, their training is more difficult than the training of standard sigmoidal
based networks For example, it is well known [5] that back-propagation is not
efficient in training product units. So far, the studies carried out on PUNNs have not
tackled the problem of the simultaneous design of the structure and weights in this
kind of neural network, using either classic or evolutionary based methods. Moreover,
product units have been applied mainly to solve regression problems [3],[6],[7].

We consider a product-unit neural network with the following structure: an input
layer with k nodes, a node for every input variable, a hidden layer with m nodes,

 Hybrid Evolutionary Algorithm with PUNNs for Classification 353

and an output layer with J nodes, one for each class level. There are no connections
between the nodes of a layer, and none between the input and output layers either.
The activation function of the j-th node in the hidden layer is given by

1

(,) ji

k
w

j j i
i

B x
=

= ∏x w where jiw is the weight of the connection between input node i

and hidden node j and 1(,...,)j j jkw w=w the weights vector. The activation function

of output node l is given by 0
1

()
m

l l
j

j

Bβ β
=

+∑ jx, w ,

where l

jβ is the weight of the

connection between hidden node j and output node l and 0
lβ the corresponding

bias. The transfer function of all hidden and output nodes is the identity function. In
this way, the estimated function (;)l lf x θ from each output is given by:

 0
1

(;) (,), 1,2,...,
m

l l
l l j j j

j

f B l Jβ β
=

= + =∑x θ x w (2)

where 1(, ,...,)l
l m=θ β w w and 0 1(, ,...,)l l l l

mβ β β=β .

We consider the softmax activation function given by:

() ()
()

1

exp ,
, , 1,2,...,

exp ,

l l
l l J

l l
l

f
g l J

f
=

= =
∑

x θ
x θ

x θ
 (3)

Fig. 1. HEPCD algorithm framework

POPULATION
GENERATION

HEPCD

INITIAL
POPULATION

POPULATION
GENERATION

1, 2, ...t =

0G

0Gt

1, ...,t final+

1
c

1
c

1
c

2
c

2
c

2
ck

c

k
c

k
c

Levenberg-
Marquardt

BEST CCRt

EP

k
c

Best CCRt of cluster

354 F.J. Martínez- Estudillo et al.

Let { }(,) : 1,2,...,n n TD n n= =x y be the training data set, where 0inx > , ,i n∀ and

ny is the class level of the n-th individual. We adopt the common technique of

representing class levels using a “1-of-J” encoding vector ()(1) (2) (), ..., Jy y y=y , such

as () 1ly = if x corresponds to an example belonging to class l and, otherwise
() 0ly = . The cross-entropy error function for those observations is:

()()

1 1

1
() log ,

Tn J
l

n l n l
n lT

l y g
n = =

= − ∑∑θ x θ (4)

where 1(,...,)J=θ θ θ . The optimum rule ()C x is the following:

 ˆ ˆ ˆ() , where arg max (,), for 1,2,...,l lC l l g l J= = =x x θ (5)

Finally, we define the corrected classified rate by
1

(1/) (())
Tn

T n n
n

CCR n I C
=

= =∑ x y ,

where ()I i is the zero-one loss function.

3 The Hybrid Evolutionary Neural Network Algorithm

The algorithm called dynamic hybrid evolutionary programming with clustering
HEPCD carries out a clustering process and a local search procedure throughout the
evolutionary process. Concretely, we apply the clustering process and the local search
to the best individual of each cluster in different stages of the evolution and in the
final population. The clustering process is applied only to a percentage of the best
individuals of the current population. The local search is applied to the best individual
of each cluster and the fitted individuals are stored in a separate population B. The
final solution is the best individual among the local optima found during the
evolutionary process. The local optimization algorithm used in our work is the
Levenberg-Marquardt (L-M) optimization method. In any case, any other local
optimization algorithm can be used in a particular problem.

The general framework of the Dynamic Hybrid Evolutionary Programming with
Clustering (HEPCD) is the following (see Figure 1):

1. Generate a random population of size PN .

2. Repeat until the stopping criterion is fulfilled
2.a) Apply parametric mutation to the best 10% of individuals. Apply

structural mutation to the remaining 90% of individuals.
2.b) Calculate the fitness of every individual in the population.
2.c) Add best fitness individual of the last generation (elitist algorithm).
2.d) Rank the individuals with respect to their fitness.
2.e) Best 10% of population individuals are replicated and substitute the

worst 10% of individuals.
Apply the following process every G0 generations:

2.f) Apply k-means process to best %s individuals of the population in
the current generation, assigning a cluster to each individual.

 Hybrid Evolutionary Algorithm with PUNNs for Classification 355

2.g) Select the best CCR solution in each cluster and apply the L-M
algorithm to each selected individual.

2.h) Select the best CCR individual among optimized ones and add it to
the B set.

3. Select the best CCR individual in set B and return it as the final solution, using
CCR as the selection criterion.
Next, we describe parametric and structural mutations and the clustering process in

detail.

3.1 Structural and Parametric Mutations

The fitness measure is a strictly decreasing transformation of the entropy error ()l θ

given by
1

()
1 ()

A g
l

=
+ θ

, where g is a product-unit neural network given by the the

multivaluated function () () ()1 1, (, ,..., ,)l lg g g=x θ x θ x θ . Parametric mutation is

accomplished for each coefficient jiw , l
jβ of the model with Gaussian noise:

1 2(1) () (), (1) () ()l l
ji ji j jw t w t t t t tξ β β ξ+ = + + = + (6)

where () (0, ())k kt N tξ α∈ , for each 1,2k = , represents a one-dimensional normally-

distributed random variable with mean 0 and variance ()k tα . Once the mutation is

performed, the fitness of the individual is recalculated and the usual simulated
annealing process is applied. Thus, if AΔ is the difference in the fitness function after
and preceding the random step, the criterion is: if 0AΔ ≥ , the step is accepted, and if

0AΔ < , the step is accepted with a probability exp(/ ())A T gΔ , where the

temperature ()T g of an individual g is given by () 1 (), 0 () 1T g A g T g= − ≤ < . The

variances ()k tα are updated throughout the evolution of the algorithm. There are

different methods to update the variance. We use the 1/5 success rule of Rechenberg
[8], one of the simplest methods.

Structural mutation implies a modification in the neural network structure and
allows explorations of different regions in the search space while helping to keep up
the diversity of the population. There are five different structural mutations: node
deletion, connection deletion, node addition, connection addition and node fusion.
The first four are similar to the mutation in the GNRL model [9]. In the node fusion,
two randomly selected hidden nodes, a and b , are replaced by a new node c , which
is a combination of the two. The connections that are common to both nodes are kept,
with a weight given by:

 (), (1/ 2)l l l
c a b jc ja jbw w wβ β β= + = + (7)

The connections that are not shared by the nodes are inherited by c with a probability
of 0.5 and their weight is unchanged. The stop criterion is reached if one of the
following conditions is fulfilled: a number of generations is reached or the variance of
the fitness of the best ten percent of the population is less than 410− .

356 F.J. Martínez- Estudillo et al.

3.2 Clustering Partitioning Technique

Let { }(,)n nD = x y be the training data set. We assign to each classifier g the binary

vector ˆ gy of Tn dimension, where the i coordinate is 1 if the ix pattern is correctly

classified and otherwise 0. Thus we can define the distance between two neural
networks classifiers g and h as the Euclidean distance between the associated

vectors ˆ ˆ(,) g hd g h y y= − . With this distance measurement, the proximity between

two classifiers is related to their performance and the diversity of the classification
task. So, similar functions using this distance will have a similar performance for the
same classification problem. We use K-means clustering. The centroid of each is
defined as the mean data vector averaged over all items in the cluster and does not
correspond to any concrete model of the population. We use the centroid only as a
tool of the algorithm. The choice of the K-means has been made mainly because it is
simple, fast and easy to implement. The number of clusters must be pre-assigned.

4 Experimental Results

We evaluate the performance of our methodology on four data sets with different
features taken from the UCI repository [10]: Breast-w, Breast-Cancer (Cancer),
Balance-scale and Australian card. The experimental design was conducted using a
10-fold stratified cross-validation procedure and 10 runs per each fold. The
parameters used in all experiments were: the exponents jiw were initialized in the

interval [5,5]− , the coefficients jβ were initialized in [10,10]− , the size of the

population was 1000pN = and 1 2(0) 0.01, (0) 0.1α α= = . The maximum number of

generations was 200. The only parameter of the L-M algorithm is the tolerance of the
error to stop the algorithm, in our experiment this parameter had the value 0.01. The
K-means algorithm was applied to 25%s = of the best individuals of the population.
The number of K clusters was 4 and the maximum number of hidden nodes was 6.
The clustering process and the local search were carried out in the 100, 150 and 200th
generation (0 50G =). Table 1 shows the statistical results of the HEPCD algorithm.

Moreover, we compare our approach to recent results [11] obtained using eleven
classification techniques: Logistic model tree algorithm, LMT, two logistic regression
(with attribute selection, SLogistic, and for a full logistic model, MLogistic);
induction trees (C4.5 and CART [12]); a naïve Bayes tree learning algorithm NBTree
[13]; two functional tree learning algorithms LTreeLin and LTreeLog [14] and
finally, multiple-tree models M5´ for classification [15], and boosted C4.5 trees using
AdaBoost.M1 with 10 and 100 boosting interactions. Under the hypothesis of the
normality of the results, we carried out a t-student test (5% level significance)
comparing our HEPCD approach to the best algorithm (in bold face) for each dataset.
The asterisk in Table 2 shows that there are significant differences, in the mean of the
CCRG, between HEPCD and LTreeLin for the Balance dataset. There are not
significant differences between HEPCD and the best algorithm for the rest of the
datasets.

 Hybrid Evolutionary Algorithm with PUNNs for Classification 357

Table 1. Statistical results of training and testing for 100 executions of the HEPCD algorithm

CCR Training CCR Generalization # conn

Datasets Mean SD Best Worst Mean SD Best Worst Mean SD

Breast-w 76.44 1.16 79.07 74.03 73.50 6.83 85.71 57.14 10.81 2.14

Cancer 97.67 0.26 98.25 0.26 96.71 1.94 100.00 1.94 10.67 1.41

Balance 97.39 0.95 100.00 96.09 96.10 2.69 100.00 88.70 19.21 5.45

Australian 87.77 0.81 90.50 85.99 85.46 3.99 95.65 72.46 33.96 12.9

Table 2. Mean classification accuracy and standard deviation of CCRG for LMT, SLogistic,
MLogistic, C4.5, CART, NBTree, two tree functional learning algorithms (LTReeLin and
LTreeLog), M5’ for classification and ABoost(10) and ABoost(100). The results were taken
from [11].

Datasets LMT SLogistic MLogistic C4.5 CART NBTree

Breast-w 96.18±2.20 96.21±2.19 96.50±2.18 95.01±2.73 94.42±2.70 96.60±2.04

Cancer 74.91±6.29 74.94±6.25 67.77±6.92 74.28±6.05 69.40±5.25 70.99±7.94

Balance 89.71±2.68 88.74±2.91 89.44±3.29 77.82±3.42 78.09±3.97 75.83±5.32

Australian 85.04±3.84 85.04±3.97 85.33±3.85 85.57±3.96 84.55±4.20 85.07±4.03

Datasets LTreeLin LTreeLog M5' ABoost(10) ABoost(100) HEPCD

Breast-w 96.68±1.99 96.75±2.04 95.85±2.15 96.08±2.16 96.70±2.18 96.71±1.94
Cancer 70.58±6.90 70.45±6.78 70.40±6.84 66.75±7.61 66.36±8.18 73.50±6.83
Balance 92.86±3.22 92.78±3.49 87.76±2.23 78.35±3.78 76.11±4.09 96.10±2.69*

Australian 84.99±3.91 84.64±4.09 85.39±3.87 84.01±4.36 86.43±3.98 85.46±3.99

5 Conclusions

We have proposed a new approach to solve classification problems based on the
combination of an evolutionary neural network algorithm; a clustering process and a
local-search procedure, where the clustering partitioning and the local searches are
carried out in different stages of the evolutionary process. The algorithm evolves the
non-linear model given by product-unit neural networks. The experiments carried out
suggest that a product-unit neural network is an efficient nonlinear model to solve
classification problems. Finally, the reader can observe that the basic framework of
the algorithm can be applied to different neural network models and could be tuned
by using other clustering and local search methods.

Acknowledgments. This work has been partially supported by TIN2005-08386-C05-02
projects of the Spanish Inter-Ministerial Commission of Science and Technology
(MICYT) and FEDER funds.

References

1. Durbin, R., Rumelhart, D.: Products Units: A computationally powerful and biologically
plausible extension to backpropagation networks. Neural Computation 1, 133–142 (1989)

2. Schmitt, M.: On the Complexity of Computing and Learning with Multiplicative Neural
Networks. Neural Computation 14, 241–301 (2001)

358 F.J. Martínez- Estudillo et al.

3. Martinez-Estudillo, A., et al.: Evolutionary product unit based neural networks for
regression. Neural Networks 19(4), 477–486 (2006)

4. Ismail, A., Engelbrecht, A. P.: Global optimization algorithms for training product units
neural networks. In: International Joint Conference on Neural Networks IJCNN‘2000,
Como, Italy (2000)

5. Janson, D.J., Frenzel, J.F.: Training product unit neural networks with genetic algorithms.
IEEE Expert 8(5), 26–33 (1993)

6. Engelbrecht, A.P., Ismail, A.: Training product unit neural networks. Stability and
Control: Theory and Applications 2(1-2), 59–74 (1999)

7. Saito, K., Nakano, R.: Extracting Regression Rules From Neural Networks. Neural
Networks 15, 1279–1288 (2002)

8. Rechenberg, I.: Evolutionstrategie: Optimierung technischer Systeme nach Prinzipien der
Biologischen Evolution, Stuttgart Framman-Holzboog Verlag (1975)

9. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on Neural Networks 5(1), 54–65 (1994)

10. Blake, C., Merz, C. J.: UCI repository of machine learning data bases (1998)
www.ics.uci.edu/ mlearn/MLRepository.thml

11. Landwehr, N., Hall, M., Eibe, F.: Logistic Model Trees. Machine Learning 59, 161–205
(2005)

12. Breiman, L., et al.: Classification and Regression Trees, Belmont, CA Wadsworth (1984)
13. Kohavi, R.: Scaling up the accuracy of naive bayes classifiers: A decision-tree hybrid. In:

Proc. 2nd International Conference on Knowledge Discovery and Data Mining Menlo
Park, AAAI Press, CA (1996)

14. Gama, J.: Functional trees. Machine Learning 55(3), 219–250 (2004)
15. Wang, Y., Witten, I.: Inducing model trees for continuous classes. In: Proceedings of

Poster Papers, European Conference on Machine Learning. Prague, Czech Republic.
(1997)

	Introduction
	Product-Unit Neural Networks Classifiers
	The Hybrid Evolutionary Neural Network Algorithm
	Structural and Parametric Mutations
	Clustering Partitioning Technique

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

