See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271933504

Algorithmic procedure to compute abelian subalgebras and

ideals of maximal dimension of Leibniz algebras

Article in International Journal of Computer Mathematics - December 2014

DOI: 10.1080/00207160.2014.884216

CITATIONS
3

3 authors:
Manuel Ceballos
Universidad Loyola Andalucia
50 PUBLICATIONS 325 CITATIONS

SEE PROFILE

Angel F. Tenorio
Universidad Pablo de Olavide
105 PUBLICATIONS 405 CITATIONS

SEE PROFILE

All content following this page was uploaded by Manuel Ceballos on 23 April 2022.

The user has requested enhancement of the downloaded file.

READS
29

Juan Nufez Valdés
Universidad de Sevilla
214 PUBLICATIONS 769 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/271933504_Algorithmic_procedure_to_compute_abelian_subalgebras_and_ideals_of_maximal_dimension_of_Leibniz_algebras?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/271933504_Algorithmic_procedure_to_compute_abelian_subalgebras_and_ideals_of_maximal_dimension_of_Leibniz_algebras?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-Ceballos-3?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-Ceballos-3?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Loyola-Andalucia?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-Ceballos-3?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Valdes?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Valdes?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-de-Sevilla?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Valdes?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Tenorio?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Tenorio?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Pablo_de_Olavide?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angel-Tenorio?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manuel-Ceballos-3?enrichId=rgreq-cac5c88be7b9890a53adddd4a91eb9f4-XXX&enrichSource=Y292ZXJQYWdlOzI3MTkzMzUwNDtBUzoxMTQ3ODM2NDY0OTIyNjI0QDE2NTA2NzY5NDc0MDY%3D&el=1_x_10&_esc=publicationCoverPdf

This article was downloaded by: [M. Ceballos]

On: 30 June 2015, At: 01:20

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

e International Journal of Computer
Computer Mathematics
Mathematlcs Publication details, including instructions for authors and

subscription information:
http://www.tandfonline.com/loi/gcom20

Algorithmic procedure to compute
abelian subalgebras and ideals of
maximal dimension of Leibniz algebras

Manuel Ceballos?®, Juan Nufiez* & Angel F. Tenorio”

(@) et toech # Departamento de Geometria y Topologia, Facultad de
Matematicas. Universidad de Sevilla, Aptdo. 1160. 41080-Seville,
Spain
@ CrossMark b Dpto. de Economia, Métodos Cuantitativos e Historia Econémica,
Escuela Politécnica Superior, Universidad Pablo de Olavide. Ctra.
Click for updates Utrera km. 1. 41013 Seville, Sevilla, Spain

Accepted author version posted online: 05 Feb 2014.Published
online: 27 Mar 2014.

To cite this article: Manuel Ceballos, Juan Nufiez & Angel F. Tenorio (2015) Algorithmic procedure
to compute abelian subalgebras and ideals of maximal dimension of Leibniz algebras, International
Journal of Computer Mathematics, 92:9, 1838-1854, DOI: 10.1080/00207160.2014.884216

To link to this article: http://dx.doi.org/10.1080/00207160.2014.884216

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content™) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,

and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2014.884216&domain=pdf&date_stamp=2014-02-05
http://www.tandfonline.com/loi/gcom20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160.2014.884216
http://dx.doi.org/10.1080/00207160.2014.884216

Downloaded by [M. Ceballos] at 01:20 30 June 2015

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [M. Ceballos] at 01:20 30 June 2015

Taylor & Francis
Taylor & Francis Group

International Journal of Computer Mathematics, 2015
Vol. 92, No. 9, 1838-1854, http://dx.doi.org/10.1080,/00207160.2014.884216

Algorithmic procedure to compute abelian subalgebras and
ideals of maximal dimension of Leibniz algebras

Manuel Ceballos**, Juan Nuafiez? and Angel F. Tenorio®

aDepartamento de Geometria y Topologia, Facultad de Matematicas. Universidad de Sevilla, Aptdo. 1160.
41080-Seville, Spain; PDpto. de Economia, Métodos Cuantitativos e Historia Econémica, Escuela
Politécnica Superior, Universidad Pablo de Olavide. Ctra. Utrera km. 1. 41013 Seville, Sevilla, Spain

(Received 5 August 2013; revised version received 6 November 2013; accepted 13 January 2014)

In this paper, we show an algorithmic procedure to compute abelian subalgebras and ideals of a given
finite-dimensional Leibniz algebra, starting from the non-zero brackets in its law. In order to implement
this method, the symbolic computation package MAPLE 12 is used. Moreover, we also show a brief
computational study considering both the computing time and the memory used in the two main routines
of the implementation. Finally, we determine the maximal dimension of abelian subalgebras and ideals for
3-dimensional Leibniz algebras and 4-dimensional solvable ones over C.

Keywords: Leibniz algebra; abelian subalgebra; abelian ideal; « invariant; 8 invariant; algorithm

2010 AMS Subject Classifications: 17A32; 17A60; 17-08; 68W30; 68Q25

1. Introduction

Nowadays, there exists an extensive research on Lie and Leibniz algebras due to both its own
theoretical importance and its applications to many different fields, such as engineering, physics
and applied mathematics. However, some general aspects of this theory remain unknown. For
instance, the problem of classifying Lie algebras is still open. Due to Levi and Malcev’s theorems
(see [12,14], respectively), the study of finite-dimensional Lie algebras over a field of charac-
teristic zero is reduced to the study of solvable and semisimple algebras and the classification
of semisimple Lie algebras was obtained from works of Killing and Cartan (and see also [11]).
However, solvable Lie algebras are only known in lower dimensions.

Leibniz algebras were introduced at the beginning of the 1990s by Loday [13]. They are a
non-commutative generalization of Lie algebras and hence, inherit important properties of these
algebras. There are two different types: left and right Leibniz algebras. In the case of right Leibniz
algebras (which are those dealt with this paper), the right multiplication operator is a derivation
(indeed, an inner derivation). On the contrary, when considering left Leibniz algebras, the right
multiplication is not a derivation, but the left multiplication. Many results of the theory of Lie
algebras can be extended to Leibniz algebras. In this sense, there exists an analogue of Levi’s
theorem for Leibniz algebras [3], which states that the classification of these algebras can be
reduced to classify semisimple and solvable Leibniz algebras, where the semisimple part is a Lie

*Corresponding author. Email: mceballos@us.es

© 2014 Taylor & Francis

mailto:mceballos@us.es

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1839

algebra. Moreover, Casas et al. [6] proved that the study of complex finite-dimensional solvable
Leibniz algebras can be reduced to studying nilpotent ones. Current techniques do not allow
researchers to face up successfully to the classification problem of solvable Leibniz algebras.
Hence, to solve this and other problems, new and different properties of Leibniz algebras require
to be studied naturally. Taking a simple related example, conditions on the lattice of subalgebras
often lead to information about the algebra itself. In this way, studying abelian Leibniz subalgebras
and ideals of a finite-dimensional Leibniz algebra constitutes the main goal of this paper, since
this study would allow us to advance in the classification problem in the future.

In a previous paper [9], the authors developed an algorithmic method to compute abelian sub-
algebras and ideals of maximal dimension for Lie algebras. Now, in this paper, we generalize that
method to Leibniz algebras. In that way, given a finite-dimensional Leibniz algebra £, the max-
imal dimension of its abelian subalgebras and ideals is denoted by « (L) and (L), respectively.
Note that both values are invariants of £, being very important for many subjects; such as, for
example, studying Leibniz algebra contractions, derivations and degenerations.

The paper is structured as follows: after reviewing some preliminaries in Section 2, Section 3
is devoted to give a step-by-step explanation of the algorithmic method focused on computing
abelian subalgebras and ideals of Leibniz algebras, emphasizing the novelty in relation with
the algorithm introduced in [9] and its implementation. Next, Section 4 shows an example of
application for our algorithm, providing the computation of the abelian subalgebras and ideals
of maximal dimension for 3-dimensional Leibniz algebras and 4-dimensional solvable ones,
also including an example where the maximal dimension is different depending on considering
subalgebras or ideals. Afterwards, a brief computational and statistical study of the algorithm
is introduced in this paper. Finally, Section 6 is devoted to determine the complexity of the
algorithm.

2. Preliminaries

We recall here some preliminary concepts on Leibniz algebras, bearing in mind that the reader
can consult [13] for a general overview. Let us note that in this paper we only consider finite-
dimensional Leibniz algebras over the complex number field C.

A Leibniz algebra £ over a field K is a vector space with a second inner bilinear composition
law [-, -], which verifies the so-called Leibniz identity

(X, YL Z]1=[IX, ZL YT+ X, [Y, 21, WX,Y,Z € L.

If, in addition, is verified that [X, X] = 0, for all X € L, then L is also a Lie algebra. In this case,
it is satisfied that [X, Y] = —[Y, X] and the Leibniz identity is equivalent to the Jacobi identity
O LY, Z + 1Y, [Z, X7 + [Z,[X, Y]] = 0).

Given a basis {e;j}_; of a n-dimensional Leibniz algebra L, its structure constants are defined
by [ei, &1 = > r_; c}fjek, forl <i,j<n.

The centre of a Lelbniz algebra, L, is given by

Cent(L) ={X e L|[X,Y]=0=[Y,X], VY € L}.
The derived algebra of a Leibniz algebra, £, is given by
DL) = (X, Y1IX,Y € L}.

Given a Leibniz algebra £, a vector subspace M of L is a subalgebra if [M, M] € M.
Moreover, M is an abelian subalgebra if [u,v] = 0, for all u,v € M; that is, if Cent(M) = M.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1840 M. Ceballos et al.

In addition, if the subalgebra M satisfies the conditions [M, £] € M and [£, M] € M, then
we say that M is a (two-sided) ideal of L. If only one of these two conditions holds, then M is
named left- and right-ideal, respectively.

In order to compute the basis of an abelian subalgebra of maximal dimension of £, we apply
the technique proposed in [2] by considering a basis 5, = {ej}i., of the n-dimensional Leibniz
algebra £ and another basis B = {vn}£_, of an arbitrary k-dimensional (abelian) subalgebra M
(with k < n). Since each vector v, € B is a linear combination of the vectors in 13,, we can express
itasvy, = Z?:l an,i€i. In this way, the basis B is translated into the k x n matrix in which the hth
row saves the coordinates of vy, with respect to the basis B,

a1 412 -+ Qin
: (1)

A1 G2 - Qkn

The rank of the matrix (1) is obviously equal to k. Consequently, after applying elementary
row and column transformations, its associated echelon form is as follows:

bigs O -+ 0 bigsr -+ b
0 by .-+ 0 boggr --- ban
: S : : . : @
0 0 -+ brk brksr o bk

So, without loss of generality, we can assume that any basis 15 of M can be expressed by the
matrix (2). Therefore, each vector in B is a linear combination of two different types of vectors e;:
the ones coming from the pivot positions and the remaining ones. The first are called main vectors
of B with respect to B,, with the rest being called non-main vectors.

Let us note that we can also assume that the coefficient of each main vector is equal to 1.
Effectively, each basis vector in the subalgebra M is expressed as a linear combination of one
main vector and the n — k non-main ones, with their coefficients being saved as a row in the
matrix (2). Hence, as the pivot coefficient corresponds to the main vector, the whole row can be
divided by this coefficient. This fact will be used in the next section to implement the fourth step
of our algorithm to find out abelian ideals and subalgebras.

3. Algorithm to compute abelian subalgebras and ideals

In this section, we give a generalization of the algorithmic procedure introduced by ourselves
in [9]. In that reference, we gave the procedure to compute all the abelian subalgebras and ideals
of a given Lie algebra starting from its law. Now, our goal is to adapt and adjust this procedure
to make possible the computation of every abelian subalgebra and (two-sided) ideal for a given
Leibniz algebra also described by its law. In addition, the algorithm also finds out the maximum
among those subalgebras and ideals in order to determine the value of the invariants « and 8. If
the dimension of the algebra is small, its abelian subalgebras and ideals can be easily computed
because the number of non-zero brackets is quite greater in proportion to the dimension. To solve
this computational problem, we have implemented an algorithmic procedure which computes a
basis of each non-trivial abelian subalgebra. To do so, we use the main and non-main vectors to
express an arbitrary basis of the subalgebra and, hence, to determine the existence of non-zero
brackets for each candidate subalgebra.

Before describing the algorithmic procedure for Leibniz algebras, we give previously an
example to show how the main and non-main vector are going to be used in our procedure.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1841

Example 1 Let us consider the 3-dimensional Leibniz algebra £ with law [e1,e;] = e1 + ey,
[e1,e2] = —e; — e,. Obviously, £ is non-abelian and both span(e,) and span(e3) are abelian
subalgebras of dimension 1. Consequently, 1 < «(£) < 2. Now, we check the existence of 2-
dimensional abelian subalgebras in £. The general expression of these subalgebras is the following
by using main and non-main vectors:

as = ({ei + Aises |1 < i <3 A #s}),

where e is the non-main vector. In this case, there exist three possible expressions for such
subalgebras.

e Fors = 1, the subalgebra should be span(e; 4+ A,1€1, €3 + Az1€1) with brackets.

[e2 + A21€1,€2 + Az1€1] = A21(A21 — 1)(€1 + €2),
[€2 + A21€1,€3 + Az1€1] = Az1A31(81 + €2),
[e3 + Az1€1,€2 + Az1€1] = A31(Ah21 — 1)(1 + €2),
(€3 + A31€1,€3 + A31€1] = A31r31(61 + €2).

So, we only obtain the abelian subalgebras span(e; + e1, €3) and span(ey, €3).
e For s = 2, the subalgebra should be span(e; + 11262, €3 + A32€2), leading to the brackets.

[61 + A12€2,€1 + Ag0€2] = (1 —Az1)(€1 +€2), [€1+ A12€2,€3 + A32€2] = —A32(E1 + €2),

[e3 + A32€2,€1 + A12€2] = [€3 + A32€2, €3 + A3262] = 0.

Therefore, we only obtain the abelian subalgebra span(e; + e, €3).
e For s = 3, we should consider the subalgebra span(e; + A13€3, €2 + Az3€3). In this case, we
obtain no abelian subalgebras since [e1 + A1 3€3,€2 + Ap3e3] = —e; — €2 # 0.

Therefore, we obtain that «(£) = 2 and the abelian subalgebras of maximal dimension are
a = span(e; + e, €e3) and b = span(ey, e3). Now, we study which of those abelian subalgebras
are (two-sided) ideals of L. First, b is not an ideal since [e;,e,] = —e; — €, ¢ b. However, a is
an ideal because D(L) = (e; + &;) C a.

Now, we show the general algorithmic procedure: let us consider a n-dimensional vector space
L with basis B, = {ej};_, and with a second bilinear inner operation [-, -], determined by certain
products [ej, &)1 = Y y_; c}fjek (1 <i,j < n). The algorithmic procedure consists of the following
steps, starting with inserting the law of £ and checking that the Leibniz identities hold.

Step 1 Introducing the bracket between two arbitrary basis vectors in ;.

Step 2 Computing the bracket between two vectors expressed as a linear combination of
vectors from the basis B,.

Step 3 Checking the Leibniz identities for the vector space L.

Step 4 For each k-dimensional subalgebra M of £, computing the bracket between two
arbitrary vectors in the basis 5. These vectors will be expressed as linear combinations of
main and non-main vectors.

Step 5 Solving a system whose equations are obtained by imposing the abelian law to the
brackets computed in the previous step for the subalgebra M.

Step 6 Determining the existence of abelian subalgebras in a fixed dimension, starting from
the solutions of the system solved in the previous step.

Step 7 Computing the value of the « invariant for the algebra £ by ruling out dimensions for
abelian subalgebras.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1842 M. Ceballos et al.

Step 8 Computing the basis of an abelian subalgebra for a fixed set of non-main vectors and
restrictions given by the previous subroutines.

Step 9 Computing a list of all the abelian subalgebras of £ with dimension k.

Step 10 Computing a list with the bases of all the non-trivial abelian subalgebras of L,
including those of dimension «(L).

Step 11 Determining the existence of an abelian (two-sided) ideal associated with a given
abelian subalgebra.

Step 12 Computing B(L), starting from the value of «(£) and the previous step.

Step 13 Computing a list with the bases of all the non-trivial abelian ideals of £, including
those of dimension 8(L).

The main structure of this algorithm can be almost automatically translated from the case
of Lie algebras (introduced in [9]) into that of Leibniz algebras. However, several significant
changes must be carried out for its application to Leibniz algebras. First of all, Leibniz algebras
do not satisfy both commutative and skew-symmetric properties in general (i.e. [X, X] = 0 and
[X,Y] = —[Y,X] for all X,Y € L, respectively). Hence, all these brackets must be inserted in
the law, taken into account in the intermediate computations and checked when imposing the
abelian condition to the subalgebras of £ (in Steps 1-5). Moreover, when checking if an abelian
subalgebra is a (two-sided) ideal in Step 11, we must use the two-sided condition to assure that
the subalgebra is a right- and lef-ideal of L.

In a second level, we have obtained several improvements related to simplifications in the
implementation, which are also valid for the case of Lie algebras in [9]. For example, we have
used the command el i f instead of i f to reduce the complexity of the implementation. In this
sense, we will only explain those steps in the implementation given in [9], which had to be
generalized and adapted in order to make applicable the implementation to Leibniz algebras. In
this sense, the description and implementation of Steps 7, 8, 10, 12 and 13 can be found exactly
in [9] and there are no difference between considering Lie and Leibniz algebras for these steps.

We have implemented our algorithm by using the symbolic computation package MAPLE 12,
although the implementation works properly in higher versions. In the first place, we load the
libraries| i nal gandLi st Tool s toactivate commands like Fl at t en and others related to lin-
ear algebra. Moreover, we also have to load the librariesconbi nat and Mapl et s[El enent s].
The first is used to apply commands of combinatorial algebra and the second to display a message
reminding the user that it is required to introduce the input in the first subroutine. Let us note that all
the routines explained hereafter must be written in the same worksheet in order to run it after intro-
ducing the data asked for by the dialog window built with the library Mapl et s[El enment s].
Now, we explain the steps with differences in our algorithm.

Step 1 We have define the subroutine | aw to introduce the bracket between two arbitrary
basis vectors in By,. It receives two natural numbers as inputs, which represent the subindexes
of two basis vectors in 3,. The subroutine returns the result of the bracket between these two
vectors. A conditional sentence is introduced to determine each non-zero bracket. Let us note
that the user has to complete the implementation of this subroutine depending on the law of
L, so we have added a sentence at the beginning of the implementation to remind this fact.
Notice that before running any other sentence, we must restart all the variables and delete
all the computations saved by using the command r est ar t . Moreover, we must update the
value of the dimension in the variable di mwith the command assi gn.

> restart:

> mapl et: =Mapl et (Al ertDi al og("Rem nd to introduce the non-zero brackets
and the dinmension in subroutine |aw',’ onapprove’ =Shut down(" Conti nue"),
"oncancel ' =Shut down(" Aborted"))):

> Mapl et s[Di spl ay] (napl et):

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1843

> assign(dim...):

> |aw =proc(i,j)

> if (i,j)=... then ...;
> elif ...

> else 0; end if;

> end proc;

The ellipsis in command assi gn corresponds to writing the dimension of £. The following
two suspension points are associated with the computation of [e;, &;]: the value of the pair of
subindexes (i, j) and the result of [e;, e;] with respect to B,. The last ellipsis denotes the rest
of non-zero brackets. For each non-zero bracket, a new sentence el i f has to be included in
the cluster.

Notice that the main difference between this implementation and the one considered in [9]
is that here we cannot consider the skew-symmetry property.

Step 2 The computation of a bracket between two arbitrary vectors of £ expressed as linear
combinations of the basis B, is carried out by the subroutine br acket . The subroutine | aw
is called in the implementation.

> bracket: =proc(u,v,n)

> | ocal exp; exp:=0;

> for i from1l to n do

> for j from1l to n do

> exp: =exp + coeff(u,e[i])*coeff(v,e[j])*law(i,]);

> end do;

> end do;

> return exp;

> end proc:

Step 3 To check the Leibniz identities in the vector space £, the subroutine Lei bni z is
implemented. Its unique input is the dimension n of the vector space £ and its outputist r ue
if LisreallyalLeibnizalgebraandf al se otherwise. Thisimplementation uses the subroutine
br acket and requires four local variables: first, the lists L and Mare used respectively to save
the list of the first n numbers repeated three times and the list of all the possible permutations
of the previous list taken three by three; the variable N is defined in order to save all the
expressions from the Leibniz identities; and, finally, the list P solves the resulting system of
equations. The output of this subroutine is f al se in case that the system has no solutions
and t r ue otherwise.

> Lei bni z: =proc(n)

> local L,MN P;L:=[];M=[];N=[];P:=[];

> for i from1l to n do

> L:=[op(L),i,i,i];

> end do;

> M =pernut e(L, 3);

> for j from1l to nops(M do

> eq[j]:=bracket(bracket(e[Mj][1]].e[Mj][2]],n),e[Mj][3]].n)-
> bracket (bracket (e[Mj][1]],e[Mj][3]].n).e[Mj][2]].n)-
> bracket (e[Mj][1]], bracket(e[Mj][2]],e[MjI[3]],n),n);
> end do;

> N: =[seq(eq[K], k=1..nops(M)];

> for i from1l to nops(N do

> if N[i]<>0 then P:=[op(P),Nill;

> end if;

> end do;

> if P=[] then return "True" else return "Fal se";

> end if;

> end proc:

Once we have checked that £ is a Leibniz algebra, the algorithm can continue
running with L.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1844

M. Ceballos et al.

Step 4 For each k-dimensional subalgebra M of L, the bracket between two arbitrary vec-
tors in the basis of M is computed, being both vectors expressed as linear combinations
of main and non-main vectors. This step is implemented by the subroutine eq. Each vector
in the subalgebra M is expressed as a linear combination of one main vector (with coeffi-
cient equals 1) and the n — k non-main ones. Obviously, all these expressions depend on the
dimension of M.

This subroutine is executed after introducing the law of £, requiring four inputs: the dimen-
sion n of £; the subindexesi and | , to fix the main vectors in the bracket to be computed; and
a list Mwith the subindexes of all the non-main vectors in M. To do so, we define seven local
variables eqt 1, eqt 2, eqt 3, eqt 4, L, u and v. The subroutine br acket is called in the
implementation of eq. First, u and v correspond to the vectors of £ expressed using the main
and non-main vectors. Then, we have to compute the brackets [u, u], [u, v], [v,u] and [v, v].
In this way, the variables eqt 1, eqt 2, eqt 3 and eqt 4 save these four expressions. Finally,
the list L contains all the coefficients of those expressions with respect to 3,. Precisely, the list
L is the first term of the output of the subroutine eq. The second is a list with the main-vector
subindexesi and| used to generate L. Let us note that these two subindexes have to be saved
together with the coefficients in order to use them in a later subroutine.

For the implementation, the coefficients of the non-main vectors are denoted by b[i , k] .

> eq: =proc(n,i,l,M:list)

> |local eqtl,eqt2,eq3,eqt4, L, u,v;

> L:=[]; eqtl:=0; eqt2:=0; eqt3:=0; eqt4:=0; u:=e[i]; v:=e[l];
> for k from1l to nops(M do

> u:=u+b[i, Mk]]*e[Mk]]; v:=v+b[l,Mk]]*e[MK]];

> end do;

> eqt 1: =bracket (u, u, n); eqt2:=bracket(u,v,n);

> eqt 3: =bracket (v, u, n); eqt4:=bracket(v,v,n);

> for mfrom1l to n do

> L:=[op(L), coeff(eqtl,e[n]),coeff(eqt2,e[n]),coeff(eqt3,e[ni),

coeff(eqtd,e[nm)];
end do;
> return L,[i,I];
> end proc:

\

Let us note that the main difference between this implementation for Leibniz algebras and
that given in [9] for Lie algebras is that we now have to consider the two-sided condition for
abelian subalgebras. So, we need to impose the condition [u, v] = [v,u] = 0.

Step 5 We have implemented the subroutine sys to solve the system of equations resulting
from imposing the abelian condition to the brackets computed in the previous step for the
subalgebra M; i.e. sys solves the system generated by the output of the subroutine eq,
requiring the following two inputs: the dimension n of £ and a list Mwith the subindexes of
the non-main vectors in the basis of M. To do so, we have defined three local variables for the
implementation: list L saves the subindexes of the main vectors; list P takes all the elements
of L two by two; and, finally, list R saves all the equations of the system when imposing
the abelian condition by using the subroutine eq. Let us note that the abelian condition
must be checked on both sides for the Leibniz subalgebra as this was considered in the
implementation of eq.
sys: =proc(n,M:1list)

local L,P R

L:i=[];R=[];

for x from1 to n do

i f nmenber(x,convert(Mset))=false then L:=[op(L),x]; end if;
end do;
if nops(L)=1 then P:=[[L[1],L[1]]] else P:=choose(L,2); end if;

>
>
>
>
>
>
>
> for j from1l to nops(P) do

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1845

> R=[op(R),eq(n P[jI[1],P[jI[2],M[1]];
> end do;

> return {solve(Flatten(R))};

> end proc:

Notice that this implementation improves that given in [9] for this step for the case of Lie
algebras. Moreover, we have used less local variables and the command Fl at t en in order
to join all the lists.

Step 6 To determine the existence of abelian subalgebras with a certain dimension k, which
starts from the solutions of the system solved in Step 5, we have implemented the subroutine
absub. The input of this subroutine consists of two natural numbers, namely n and k: n is
the dimension of £; and k is less than n, representing the dimension of one of its subalgebras.
The first case to study is when k = 1, for which we have evaluated if [e;, ej] = 0 by using the
subroutine | aw. From this result, we have constructed the output of the subroutine. In the
implementation, we have used two local variables L and S: L is a list consisting of lists with
the subindexes of the n—k non-main vectors; whereas S is a set with the solutions given by
the subroutine sys. In this way, absub returns either a message indicating the non-existence
of k-dimensional abelian subalgebras or, if there exist k-dimensional abelian subalgebras, the
set S. All this is necessary because the coefficient of each main vector is 1, which implies that
the system given by the subroutine sys has no solutions when S vanishes. Conversely, when
the system has a solution, the family of computed vectors forms a basis of the subalgebra,
because it is linearly independent. Additionally, if every solution in S contains some complex
coefficient, real solutions cannot be found for the system, which implies the non-existence of
abelian subalgebras of dimension k for the field K = R. Consequently, if we want to execute
this subroutine for the real field R instead of the complex one C, we would need to include a
conditional sentence for determining if such complex coefficients appear.

> absub: =proc(n, k)

> local L,S; L:=choose(n,n-k); S ={ };

> if k=1 then

> for i from1l to n do

> if law(i,i)=0 then S:={op(S),e[i]};

> end if;

> end do;

> return S;

> end if;

> for i from1l to nops(L) do

> if sys(n,L[i])={{}} then S:=S else

> for j from1 to nops(sys(n,L[i])) do

> S: ={op(S),{convert(L[i],set),sys(n,L[i])[il}};

> end do;

> end if;

> end do;

> if S={} then return "There is no abelian subal gebra"; end if;

> if S={{}} then return "There is no abelian subal gebra" else return S;
end if;

> end proc;

Let us note that the case k = 1 was trivial in the implementation for Lie algebras in [9].

Step 9 To compute the list of abelian subalgebras of £ with dimension k < «(£), we have
programmed the subroutine | i st absub. This subroutine requires two inputs: the value n
of the dimension of £ and a natural number k less than n, corresponding to the dimension
of the abelian subalgebra. For the case k = 1, we have used the output obtained from the
subroutine absub. The implementation requires two local variables Sand L. This subroutine
calls the subroutine absub to determine the existence of k-dimensional abelian subalgebras,
saving the output of the latter in the variable S. Then, the subroutine basabsub is executed

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1846

M. Ceballos et al.

to compute a basis for each k-dimensional abelian subalgebra. Precisely, the output of the
subroutine | i st absub is the list L, consisting of the basis of each abelian subalgebra of £
with dimension k.

> | i stabsub: =proc(n, k)

> local S,L; S:=absub(n,k);L:={};

> if k=1 then {seq({absub(n,k)[i]},i=1..nops(absub(n,k)))};end if;
> if S="There is no abelian subal gebra" then {}; end if;

> for i from1l to nops(S) do

> L: ={op(L), basabsub(n, S[i]1[1],S[i][2])};

> end do;
> return L;
> end proc:

Notice that, as in Step 6, the case k = 1 was trivial in the implementation for Lie algebras
given in [9].

Step 11 To determine the existence of an abelian ideal associated with a given abelian subal-
gebra, we implement the subroutine abi deal . For this subroutine, two inputs are required:
a set S with the basis of an abelian subalgebra and the dimension n of £. The subroutine
determines if an abelian ideal can be associated with the basis S given by the subroutine
I i stabsub for a fixed dimension. To do so, we impose that S has to be also a basis of
an abelian ideal. Then, we solve the system of equations resulting from imposing all these
conditions. Let us note that here we have to use the two-sided condition in order to obtain an
abelian Leibniz ideal. If the system has no solutions, the output of abi deal is the message
“There is no abelian ideal’; otherwise, the subroutine returns the basis of an abelian ideal. In
order to implement this subroutine, we have used several local variables. First, wcorresponds
to an arbitrary vector in the subalgebra with basis S. The coefficient of each basis vector in
Sisdenoted by a[i] . Next, we define the lists R, L, Qand M which are used to save all the
resulting expressions when we impose the ideal conditions. The list L saves all the non-zero
brackets between the basis S and {e;}_,. Let us note that we have to consider the brackets
in both ways to assure that the subalgebra is a two-sided ideal. Next, in the list R we express
arbitrary vectors from the basis S with coefficients b[i, j] in order to impose the ideal
condition and the lists Qand Mare used to solve the resulting system, since Msaves the basis
of the ideal associated with the subalgebra and Qsaves the coefficients of each vector in M

abi deal : =proc(S, n)
local w, R L, Q M w=0; R=[]; L:=[]; Q={}; M={};
for i from1 to nops(S) do
w.=w + a[i]*Si];
end do;
for i from1l to nops(S) do
for j from1l to n do
if bracket(e[j],S[i],n)<>0 then
L:=[op(L), bracket(e[j],S[i],n)]; else L:=L; end if;
if bracket(S[i],e[j],n)<>0 then
L: =[op(L), bracket (S[i],e[j],n)]; else L:=L; end if;
end do;
end do;
for i from1l to nops(L) do r[i]:=O0;
for j from1l to nops(S) do
rpiJe=rfi]+bli,jI*S[jl;
end do;
end do;
R =[seq(r[i],i=1..nops(L))];
M ={seq(L[k]-R k], k=1..nops(L))};
for i from1 to nops(M do
Q ={op(Q.,seq(coeff(Mi],e[j])=0,j=1..n)};
end do;
if {solve(Q}={} then return "There is no abelian ideal" else

VVVVVVVVVVVVVVVVVVVVYVYVYVYV

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1847

> return eval (S, solve(Q);
> end if;
> end proc:

We conclude this section showing an example of application of our algorithm and routines.

Example 2 Next, we show an example with the 3-dimensional Leibniz algebra with law
[e1,e1] = €1 + e3, [61,€2] = €1 + €3, [€1, €3] = —e; — e3. First, we complete the implementation
of | awas follows:

>
>

VVVVVVYVYVYV

restart:
mapl et : =Mapl et (AlertDial og("Don’t forget to introduce non-zero brackets of the
al gebra and its dinension in subroutine |aw',’ onapprove’ =Shut down(" Conti nue"),

"oncancel ' =Shut down(" Aborted"))):

Mapl et s[Di spl ay] (mapl et):
assign(dim 3):
I aw: =proc(i,j)
if (i,j)=(1,1) then e[1] +e[3];
elif (i,j)=(1,2) then e[1]+e[3];
elif (i,j)=(1,3) then -e[1]-¢e[3];
el se 0;
end if;
end proc:

After that, we run all the subroutines. Now, we can compute « and 8 invariants as well as the

set of abelian subalgebras and ideals of the Leibniz algebra £ by using the commands defined by
the above-mentioned subroutines.

\%

\%

\%

\%

\%

al pha(di m;

|'i stabsub(di mal pha(din));
{{e[2].e[3]} {e[1]-e[2] ,e[3]+e[2]}.{e[1] +e[3].e[2]-e[1]},{e[1] +e[3],
e[3] +e[2]}}
al | absub(din;
{{{el2]}.{e[3]}}.{{el[2] ,e[3]}.{e[1]-e[2].e[3] +e[2]}, {e[1] +e[3],
~e[2]-e[1]},{e[1] +e[3], e[3] +e[2] } } }
beta(dim;

2

2
al | abi deal (din);
{{el[1]-e[2],e[3]+e[2]} {e[1] +e[3].e[2]-e[1]},{e[1] +e[3], e[3] +e[2] }}

Table 1. 3-dimensional non-Lie, Leibniz algebras.

L Brackets all) BL)
L3 [e2,e2] = aey, [e3,€2] = ey, [e3,e3] = €1 2 2
Lo [es,e3] = e 2 2
L3 [e2,e2] = ey, [es,e3] = €1 2 2
L4 [e1,e3] =¢e; 2 2
L3 [er,es] =aer(a # 0), [e2,63] = €2, [e3,82] = —€2 2 2
Lg [e2, €3] = €2, [e3,€2] = —€2, [€3,€1] = €1 2 2
G melmigismae
Lsg [e1,e3] = aei(a # 0),[e2,e3] = €2 2 2
Lo [e1,e3] =e1 + e [e2,€3] =€ 2 2
L10 le1,e3] = ez, [e3, e3] = €1 2 2
L11 [e1, €3] = €2, [e2,€3] = €2, [e3,€3] = €1 2 2

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1848 M. Ceballos et al.

We would like to point out that in this case, the abelian subalgebra span(e,, e3) is an abelian
left-ideal, but not an abelian right-ideal. Hence, this subalgebra does not appear in the list of
(two-sided) ideals.

4. Application of the algorithmic method

As example of application of the algorithm, we study and compute « and 8 invariants for low-
dimensional Leibniz algebras. These invariants have not been previously studied for Leibniz
algebras. Indeed, we determine the value of « and 8 invariants for 3-dimensional Leibniz algebras
and 4-dimensional solvable ones over C. To do so, we have used the classifications givenin [1,4,5].
Let us note that we have not considered the case of Lie algebras in these classifications, since the
value of @ and g for them was already computed in [7, Proposition 4.1].

ProposITION 1 Let £ be a 3-dimensional non-Lie, Leibniz algebra. Then, the values of «(£) and
B (L) are given in Table 1.

Table 2. 4-dimensional nilpotent, non-Lie and Leibniz algebra.

L Brackets a(L) B(L)
Ly [e1,e1] =e2,[e2,€1] = €3,[e3,81] = €4 3 3
Ly [e1,€1] = e3,[€1,€2] = €4, [€2,€1] = €3,[€3,€1] = €4 3 3
L3 [e1,e1] =e3,[e2,€1] =e€3,[e3,€1] = €4 3 3
ra [e1,e1] = e3, [e1, €2] = aeq, [e2,€1] = €3, 2 2
4 [e2,€2] = €4, [e3,€1] = €4(a € {0,1})
Ls [e1,e1] = e3, [e1,€2] =eq,[€3,€1] = €4 3 3
Ls [e1,e1] =es3,[e2,€2] = €4, [€3,81] = €4 2 2
[e1,€1] = €4, [€2,€1] = €3, [€3,€1] = €4,
L7 [e1,€2] = —e3, [e1,€3] = —€4 8 3
[e1,€1] = e4,[€2,€1] = €3,[€3,€1] = €4
Ls [e1,€2] = —€3 +€4,[€1,€3] = —€4 8 8
Lo [e1,€1] = €4, [€2,€1] = €3,[€2,€2] = €4 2 2
[e3,€1] = €4, [€1,€2] = —€3 + 2€4,[€1,83] = —€4
L10 [e1,e1] = e4,[2,€1] =€3,[€2,€2] = €4 2 2
[es,e1] = e4,[e1,€2] = —e3,[e1,€3] = —€4
[e1,€1] = €4, [€1,€2] = €3,
2 2
= [e2,€1] = —e3,[e2,€2] = —2e3 4 &4
L1z [e1,€2] =e3,[e2,€1] = €4, [€2,€2] = —€3 3 3
ra [er,e1] =e3, [e1,€2] = €4 3 ifa=1 3 ifa=1
13 [e2,e1] = —aes, [e2,€2] = —e4 2 otherwise 2 otherwise
ra [e1,€1] = €4, [€1,€2] = aey, 2 2
14 [e2,€1] = —aes, [€2,€2] = €4,[€3,83] = €4
[e1,€2] = €4, [€1,€3] = €4,[€2,€1] = —€4
L1s le2,€2] = e4,[e3,€1] = €4 2 2
L6 [e1,e1] = e4,[€1,€2] = €4,[€2,€1] = —€4,[€3,€3] = €4 2 2
L7 [e1,e2] =e3,[e2,€1] = €4 3 3
L1g [e1,€2] = e3,[€2,€1] = —€3,[e2,82] = €4 3 3
L19 [e2,€1] = €4, [€2,€2] = €3 3 3
a 1+a
L3 [e1, €21 = €4, [€2,€1] = T——es [e2, 2] = €3 3 3

L [e1,€2] = €4, [€2,€1] = —€4,[€3,€3] = €4 2 2

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1849

Table 3. 4-dimensional solvable, non-nilpotent, non-Lie and Leibniz algebra (1).

L Brackets a(L) B(L)
Ly [e1,e3] = €1, [e2,€4] = €2 2 2
L [e1,€3] =€1,[2,64] = €2,[E4,€2] = —€2 2 2
r [e1,€2] = e3,[e2,€1] = —e3,[€1,€4] = €1,[€2,04] = —€2 2 2
3 [e4,€1] = —e1,[e4,€2] = €2,[€4,€4] = €3
v [e2,e1] = e3,[e1,€4] = €1,[€2,€4] = yey, 2 2
4 [es,e4] = (1 + y)es, [es, €1] = —e1
[e2,€1] = e3,[€1,€4] = €1,[€2,84] = —€2
£s [e4,€1] = —€1,[€4,€4] = €3 2 2
[e2,e1] =es, [e1,e4] = €1 +e3,[e3,64] = €3
Lo les,e1] = —e1, [e4, 4] = —€2 2 2
L7 [e2,€1] = €3, [€2,€4] = €2, [€3,64] = €3 2 2

[e2,€1] = €3, [e1,€2] = Bes, [e1,84] = €1, [€2,€4] = BE2
[es,€4] = (B + 1)es, [es,€1] = —e€1,[€4,82] = — €2

J1—-4a-1
B=————, wherea # {0,1/4}
JV1—-4a+1
y [e1,e1] = e3, [e1,€4] = €1, [€2,84] = ye2
cl 2 2
[e3,e4] = 263, [€4,€1] = —€1,[€4,62] = —yE2
rd [e1,€1] = e3,[e1,64] = €1, [€2, 4] = d€2 2 2
10 [e3,€4] = 263, [64,€1] = —€1 (5 # 0)
[e1,e1] = e3, [e1,e4] = €1, [€3,€4] = 283,
L 2 2
1 [e4,€1] = —e1,[e4,€4] = €2
L1 [e1,e1] =es3, [e1,e4] =e€1,[€2,04] = 262 + €3 2 2
L [e3,€4] = 2e3,[€4,01] = —€1
L1 [e1,e1] = €3, [e1,e4] = €1 +€2,[€2,84] = €2 2 2
[e3,e4] = 263, [€4,€1] = —€1 — €2, [€4,€2] = —€2
L14 [e1,€1] = €3, [€2,84] = €2,[€4,€2] = —€2 2 2
rH [e1,e1] = e3,[e2,04] = €2,[€4,€1] = €3 2 2
15 [e4,€2] = —e2,[€4,€4] = Ae3
L [e1,e1] = e3,[€2,€4] = €2,[€4,€2] = —€2,[€4,84] = —263 2 2
L7 [e1,€1] = e3,[e2,€4] = €2 2 2
L [e1,€1] = €3, [€2,€4] = €2, [€4,€1] = €3, [€4, 4] = €3 2 2
L19 [e1,€1] = €3, [€2,€4] = €2, [€4,€1] = €3,[€1,84] = €3 2 2
2 [e1,€4] = e1,[e2,€4] = o€z, [€3,04] = p3e3 3 3
20 [e4,€1] = —€1, [€4,€2] = —2€2 (u3 # 0)
Lhzn [e1,€4] = e1,[e2,€4] = 262 3 3

[e3,€4] = 13€3,[€4,€1] = —€1 (2, u3 # 0)

ProposITION 2 Let £ be a 4-dimensional nilpotent, non-Lie, Leibniz algebra. Then, the values
of a(£) and B(L) are given in Table 2.

ProrosITION 3 Let £ be a4-dimensional solvable, non-nilpotent, non-Lie, Leibniz algebra. Then,
the values of «(£) and B(L£) are given in Tables 3 and 4.

Although the value of « and g invariants are the same in all these classifications over C, it is
possible to find examples of (both nilpotent and solvable) Leibniz algebras over R having different
values for these invariants.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1850 M. Ceballos et al.

Table 4. 4-dimensional solvable, non-nilpotent, non-Lie and Leibniz algebra (I1).

C Brackets a(l) B
LH218 [e1,€4] = €1, [€2,€4] = 1282, [€3,84] = 11363 3 3
2 [e1,e4] = €1, [€2,€4] = 262, [€4,€1] = —€1 3 3
23 [e4,€2] = —p2e2,[€4,€4] = €3
12 [e1,€4] = €1, [€2,€4] = p2€2,
L2 [e4,€1] = —e1,[e4,€4] = €3 (k2 #0) 3 3
L52 le1, e4] = ey, [e2, €4] = o€, [€4,€4] = €3 3 3
Lo [e1,e4] = e1,[e4, 1] = —e1,[e4,€2] = €3 3 3
Lo7 [e1,e4] = ey, [es4,€2] = €3 3 3
13 [e1,e4] = €1 + €2, [€2,€4] = €2, [€3, 4] = 13e3
L2 [e4,€1] = —€1 — €2, [€4,82] = —€2 (ws #0) 3 3
r [e1,e4] = €1 +ep,[e2,64] =€2,[€4,01] = —€1 — €2 3 3
% [e4,82] = —€p,[e4,€4] = €3
53 [e1,e4] = e1 + €2, [e2,€4] = €2, [e3,€4] = u3€3 3 3
La1 [e1,64] = €1 +€2,[€2,84] =€2,[€4,84] = €3 3 3
3 [e1,€4] = €1 +€2,[€2, 4] = €2,
0 3 3
L3 [e3, e4] = p13e, [ea, €3] = —pgea M2 70
o [e1,e4] =e2,[e3,€4] = €3,
= les, e1] = ey, [ea, 03] = —e5 @ 7 D 3 3
[e1,84] = €2, [€3,€4] = €3,[€4,€1] = —€2
Las [e4,€3] = —e3,[e4,€4] = €2 3 3
L35 [e1,€4] = €2, [€3,€4] = €3, [e4, €3] = —€3,[€4,€4] = €1 3 3
L% [e1,€4] = €2, [€3,€4] = €3, [€4,€1] = ey 3 3
L37 [e1,€4] = €2,[€3,€4] = €3,[€4,€1] = —€2,[€4,€4] = €2 3 3
L3 [e1,€4] = €2, [e3,84] = €3,[€4,84] = €1 3 3
L3g [e1,e4] =1 +€2,[e2,€4] = €2 +€3,[€3,84] = €3 3 3
Lao [e1,€2] = e3, [e2,€1] = €3,[€4,€1] = —e€1,[€4,€2] = —€2, 2 2
[e1,e4] = €1, [€2,€4] = €2, [€3,€4] = 263
La1 [e1,e1] = ez, [e2,€1] = €3, (€4, 1] = —ey, 2 2

[e1,€4] = €1, [€2,€4] = 26, [€3,€4] = 3€3

Example 3 Let £ be the 4-dimensional solvable non-nilpotent Leibniz algebra over R with law

[X1,X2] = X2 — X3, [X1,Xa]l = 2Xa, [X1,X3] = X2 + X3,
[X2,X1] = X3 — X2, [X2,X3] = X4,

[X3,X1] = —X2 — X3, [X3,X2] = —X4, [X4,X1] = —2Xs.

Over R, we can prove that o (£) = 2, but 8(£) = 1. Obviously, span(xs, X4) is an abelian subalge-
bra of dimension 2. Assume that «(£) = 3. Then L is almost abelian, and hence 2-step solvable.
This is impossible, since L is 3-step solvable. Hence «(£) = 2.

Assume that | is a 2-dimensional abelian ideal. It is easy to see that we can represent | as
span(ax, + bxs, X4). Obviously both x, and x3 cannot belong to I. Hence a #£ 0 and b # 0. We
have ax, 4+ bxz € | and [xq, ax; 4 bxs] = (a + b)x, — (@ — b)xz € I. This implies a? 4+ b? = 0.
This is a contradiction over R, so that 8(£) = 1in this case. Over C,we cantakea = landb =i,
obtaining the 2-dimensional abelian ideal | = span(x, + ix3, X4).

Example 4 Given a field K of characteristic 2, the 9-dimensional nilpotent Leibniz algebra
shown in [8, Example 4.1] provides an example in which invariants « and S take values 6 and 5,
respectively.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1851

Table 5. Computing time (CT) and used memory
(UM) for al | absub.

Input CT (s) UM (MB)
n=4 0.1 3.24
n=>5 0.37 531
n==6 1.06 5.54
n=7 3.84 5.74
n=328 13.07 5.99
n=9 44.75 6.87
n=10 151.67 8.12
n=11 506.51 9.62

Table 6. CTand UM for al | abi deal .

Input CT (s) UM (MB)
n=4 0.67 6.12
n= 231 6.24
n= 10.5 6.43
n=7 58.34 6.93
n= 358.26 7.87
n=9 2146.97 8.96

5. Statistical and computational data

Now, we present a computational study of the algorithm introduced in the previous section and
run in an Intel Core 2 Duo T 5600 with a 1.83 GHz processor and 2.00 GB of RAM. Tables 5
and 6 reproduce computational data about both the CT and the memory used to obtain the outputs
of al | absub and al | abi deal with respect to the dimension n of the algebra. For this study,
we have considered the Leibniz algebra f, generated by {e;}{'_, with non-zero brackets

[ei,e1] =e€iy1, Vi<i<n-2,

and the algebra f consisting of adding the non-zero bracket [e1, e1] = es.

Both algebras, f, and f;, correspond to filiform Leibniz algebras. More concretely, f, can
be decomposed into the direct sum of a (n — 1)-dimensional nulfiliform Leibniz algebra and a
1-dimensional abelian algebra. Note that the classification of complex filiform Leibniz algebras
were already obtained in [10].

allabsub
600 |

500
400

>

300 +time(s)

200

100

0 T + +
0 2 4

10 12

(=08 3
=]

Figure 1. CT for allabsub.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1852 M. Ceballos et al.

allabsub

60
50
40
30
20

0 2 4 6 8

Figure 2. UM for allabsub.

allabsub
1%

12

L--]

S

o

1 2 3 4 5]

Figure 3. Quotient between UM and CT for allabsub.

allabideal

2000
1500
1000

500

0
0 2 4 6

Figure 4. CT for allabideal.

allabideal

0 2

Figure 5. UM for allabideal.

10

12

Ememory(Mb)

10

mmemory(Mb)

Downloaded by [M. Ceballos] at 01:20 30 June 2015

International Journal of Computer Mathematics 1853

allabideal
4 =
o) 1 5
1 2 3 4 5 8 7 8
Figure 6. Quotient between UM and CT for allabideal.
Table 7. Complexity and number of operations.
Step Routine Complexity Operations
1 | aw 0o(n?) Ni(n) = 0201
2 br acket on*) N2(n) = YLy Y75y Na(n)
3 Lei bni z om’) Na(n) = O() + OM®) + Yy Na(m) + 5, Y0y 1
n(n—1)
4 eq o(m*) Na(m) =37 Ni(n)
n(n—1)
5 Sys o(n%) Ns(n) =37;_7 Na(n)
n(n—1)
6 absub o(n') Ne(m) = Y17 24 (Ns()
7 al pha ol Nz(n) = Y"1, Ng(n)
8 basabsub o(n?) Na(n) = O(n*) + X5iL; O) + iy YL O(D)
9 l'i stabsub 0o(n'%) Ng(n) = Ng(n) + 31, Ng(n)
10 al | absub ol N10(n) = N7(n) + 314 No(n)
11 abi deal o) N11(n) = 2Ly D Na(n)
12 beta om®?) Ni2(n) = N7 () + 3325 3oLy (No(m) + Nyg ()
13 al | abi deal om'?) Ni3(n) = Ni2(n) + 3L 31 (No(n) + Nig ()

Table 5 has been obtained from computing the set of all non-trivial abelian subalgebras for the
algebras f, and f;; up to dimension n = 11 inclusive. Note that the CT is about four times greater
when the dimension n is increased in one unit starting fromn = 7.

Analogously, Table 6 shows the same variables when computing the set of all non-trivial abelian
ideals for the algebras f, and f;;, but up to dimension n = 9 inclusive, due to computational issues.
We want to remark that the CT is about five times greater when the dimension n is increased in
one unit.

Next, we show brief statistics about the relation between the CT and the memory used by the
implementation of the main routines al | absub and al | abi deal for the Leibniz algebras f,
and f.

In this sense, Figures 1 and 4 show the behaviour of the CT for both routines with respect to
the value n for the dimension of both f, and f. For its part, Figures 2 and 5 graphically represent
the behaviour of the UM for both routines with respect to the value n for the dimension of both f,
and 7. Note that the CT increases more quickly than the UM in both cases. Additionally, whereas
the increase of the CT fits a positive exponential model, the UM does not follow such a model.

Downloaded by [M. Ceballos] at 01:20 30 June 2015

1854 M. Ceballos et al.

Finally, we have studied the quotients between UM and CT, obtaining the frequency diagram
shown in Figures 3 and 6. In both cases, the behaviour also fits an exponential model, but being
negative this time.

6. Complexity of the algorithm

This section is devoted to compute the complexity of the algorithm, considering the number of
operations carried out in the worst case. We have used the big O notation to express the complexity.
To recall the big O notation, the reader can consult [15]: given two functionsf,g : R — R, itis
said that f (x) = O(g(x)) if and only if there exist M € R* and xo € R such that |f (X)| < M - g(x),
forall x > Xg.

We denote by Nj(n) the order of the operations when running Step i. This function depends
on the dimension n of the Leibniz algebra. Table 7 shows the number of computations and the
complexity of each step, as well as indicating the name of the routine corresponding to each step.
In fact, we determine that the complexity of the algorithm has a polynomial order, where the two
last routines are the most computationally expensive.

References

[1] S. Albeverio, B.A. Omirov, and I.S. Rakhimov, Classification of 4-dimensional Nilpotent complex Leibniz algebras,
Extracta Math. 21(3) (2006), pp. 197-210.
[2] J.C. Benjumea, J. NUfiez, and A.F. Tenorio, The maximal abelian dimension of linear algebras formed by strictly
upper triangular matrices, Theoret. Math. Phys. 152(3) (2007), pp. 1225-1233.
[3] D.W. Barnes, On Levi’s theorem for Leibniz algebras, Bull. Aust. Math. 86(2) (2012), pp. 184-185.
[4] E.M. Cafiete and A.K. Khudoyberdiyev, The classification of 4-dimensional Leibniz algebras, Linear Algebr. Appl.
439(1) (2013), pp. 273-288.
[5] J.M. Casas, M.A. Insua, M. Ladra, and S. Ladra, An algorithm for the classification of 3-dimensional complex Leibniz
algebras, Linear Algebr. Appl. 436(9) (2012), pp. 3747-3756.
[6] J.M. Casas, M. Ladra, B.A. Omirov, and |.A. Karimjanov, Classification of solvable Leibniz algebras with null-
filiform nilradical, Linear Multilinear Algebra 61(6) (2012), pp. 758-774.
[7]1 M. Cehallos, Abelian subalgebras and ideals of maximal dimension in Lie algebras, Ph.D. Thesis, University of
Seville, 2012.
[8] M. Ceballos and D. Towers, On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras,
J. Pure Appl. Algebra 218(3) (2014), pp. 497-503.
[9] M. Ceballos, J. Nufiez, and A.F. Tenorio, Algorithmic method to obtain abelian subalgebras and ideals in lie algebras,
Int. J. Comput. Math. 89(10) (2012), pp. 1388-1411.
[10] J.R. Gémez and B.A. Omirov, On classification of complex filiform Leibniz algebras, arXiv:math/0612735v2
[math.RA].
[11] N.Jacobson, Lie Algebras, Interscience Publishers, Wiley, New York, 1962.
[12] E.E. Levi, Sulla struttura dei gruppi finiti e continui, Atti. Accad. Sci. Torino 40 (1905), pp. 551-565.
[13] J.L. Loday, Une version non commutative des algébres de Lie: les algébres de Leibniz, Enseign. Math. (2), 39 (1993),
pp. 269-293.
[14] A.l. Malcev, Solvable Lie algebras, Trans. Am. Math. Soc. Transl. 9 (1962), pp. 228-262.
[15] H.S. Wilf, Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, 1986.

https://www.researchgate.net/publication/271933504

	1 Introduction
	2 Preliminaries
	3 Algorithm to compute abelian subalgebras and ideals
	4 Application of the algorithmic method
	5 Statistical and computational data
	6 Complexity of the algorithm
	References

