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Abstract—Performance evaluation is decisive when 
improving classifiers. Accuracy alone is insufficient because it  
cannot capture the myriad of contributing factors 
differentiating the performances of two different classifiers and 
approaches based on a multi-objective perspective are hindered 
by the growing of the Pareto optimal front as the number of 
classes increases. This paper proposes a new approach to deal 
with multi-class problems based on the accuracy ( C ) and 
minimum sensitivity ( S ) given by the lowest percentage of 
examples correctly predicted to belong to each class. From this 
perspective, we compare different fitness functions 
(accuracy, C , entropy, E , sensitivity, S , and area, A )  in an 
evolutionary scheme.  We also present a two stage evolutionary 
algorithm with two sequential fitness functions, the entropy for 
the first step and the area for the second step. This 
methodology is applied to solve six benchmark classification 
problems. The two-stage approach obtains promising results 
and achieves a high classification rate level in the global dataset 
with an acceptable level of accuracy for each class. 

I. INTRODUCTION 
ne of the fundamental problems of machine learning is 
the classification or discrimination of unknown 

examples into two or more classes based on a number of 
examples whose correct class is known, called the “training 
dataset”. Performance evaluation is decisive at many stages 
during the improvement of classifiers. The process of 
designing a new classification algorithm usually implies an 
iterative procedure where each iteration significantly alters 
the classifier, which then requires re-evaluation to establish 
its impact on performance. To evaluate a classifier, the 
machine learning community has traditionally used the 
correct classification rate or accuracy to measure its default 
performance. In the same way, accuracy has been frequently 
used as the fitness function in evolutionary algorithms when 
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solving classification problems. However, the pitfalls of 
using accuracy have been pointed out by several authors [1], 
[2]. Actually, it is enough to simply realize that accuracy 
cannot capture all the different behavioral aspects found in 
two different classifiers. Even in the simplest case where 
there are only two classes, the accuracy states a one-
dimensional ordering where we find two different types of 
errors. This problem is especially significant when we deal 
with classification problems that differ in their prior class 
probabilities (class imbalances) or where there are a great 
number of classes. It is well known that there is a significant 
failure when one class is much less common than another. 

When there are two classes, an alternative to accuracy to 
overcome these difficulties is ROC plots [1], which measure 
the misclassification rate of one class and the accuracy of the 
other. The ROC plot is a two dimensional one, with the 
misclassification rate of one class (“negative”) on the 
horizontal axis and the accuracy of the other class 
(“positive”) on the vertical axis. The ROC plot preserves all 
performance-related information about a classifier and it also 
allows instant visual inspection of key relationships in the 
performances of several classifiers. The standard ROC 
perspective is limited to classification problems with two 
classes. The extension to the standard two class ROC for 
multi-class problems ( Q -classes) considers a multiobjective 
optimization problem [3], where the objective is to 
simultaneously minimize the ( 1)Q Q −  misclassification 
rates. In terms of the confusion matrix, the extension 
considers off-diagonal elements. The main shortcoming of 
this approach is that unfortunately the dimension of the 
Pareto optimal front grows at the rate of the square of the 
number of classes. This behaviour of the Pareto front has 
several consequences. Firstly, it increases the difficulties for 
a graphic representation that would allow us to visualize the 
performance of the classifiers. Secondly, it is straightforward 
to prove that the density of the Pareto front decreases 
dramatically with respect to the number of objectives, in our 
case, the ( 1)Q Q −  misclassification rates. Moreover, in 
multiobjective optimization, it is well known that the 
probability of one point dominating over another point 
decreases dramatically as the number of objectives 
increases. Finally, it is important to keep in mind the 
computational problem associated with a multi-objective 
optimization problem that has a lot of objectives.  

The first part of this paper is devoted to proposing and 
studying a two-dimensional performance measure for multi-
class classifiers that could be seen as a trade-off between 
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scalar and misclassification rate measures. Assuming that all 
misclassifications are equally costly and there is no penalty 
for a correct classification, we start from the premise that a 
good classifier should combine a high classification rate 
level in the global dataset with an acceptable level for each 
class. Concretely, we consider the traditionally used 
accuracy C  and the minimum of the sensitivities of all 
classes S , that is, the lowest percentage of examples 
correctly predicted as belonging to each class with respect to 
the total number of examples in the corresponding class. The 
sensitivity versus accuracy pair ( , )S C  expresses two 
features associated with a classifier: global performance C  
and the rate of the worst classified class S . It is clear that 
two quantities can not collect all the information given by 
the ( 1)Q Q −   misclassification rates included in the 
confusion matrix. Nevertheless, the ( , )S C  pair tries to find 
an intermediate point between scalar measures and 
multidimensional ones based on misclassification rates. Our 
approach can be represented in a two dimensional space to 
visualize performance regardless of the number of classes in 
the problem and, moreover, it could be especially useful 
when dealing with imbalanced classification problems.  

Secondly, several problems are studied from the 
perspective of ( , )S C  . We consider the standard multilayer 
perceptron MLP to be the base classifier and an evolutionary 
neural networks algorithm searching the optimal weight set 
of the MLP, designing its architecture, finding the most 
adequate number of neurons in the hidden layer and the 
optimal number of connections. A novelty fitness function, 
the area function, ( , )A S C , is built. The area fitness function 
tries to find a good balance between the classification rate 
level in the global dataset and an acceptable level for each 
class. The performance of this fitness function together with  
three fitness functions: the accuracy, C , cross-entropy, E , 
and sensitivity, S , are analyzed in six classification 
problems, obtaining diverse results from the perspective of  
( , )S C .  

Finally, we build an evolutionary algorithm in two stages 
using two sequential fitness functions, the entropy for the 
first step and the area for the second step. The approach 
obtains promising results and a high classification rate level 
in the global dataset with an acceptable level of accuracy for 
each class. There is a comparison with other fitness 
functions as well as the graphic representation in the 2-D 
space ( , )S C  of the different classifiers obtained. 

The paper is structured as follows. First, we present our 
approach based on the sensitivity versus accuracy pair 
( , )S C   and explain its properties in depth. The third section 
contains the base version and the two-stage version of the 
evolutionary neural network algorithm and the fitness 
functions used in the experimental setup. Finally, the paper 
concludes with an analysis of the results obtained in six 
benchmark classification problems and a brief discussion of 

issues that can be followed up in future work.   

II. ACCURACY AND SENSITIVITY  
We consider a classification problem with Q  classes and 

N  training or testing patterns with g  as a classifier 
obtaining a Q Q×  contingency or confusion matrix ( )M g :  

( )
, 1

;
Q

ij ij
i j

M g n n N
=

 
= = 
 

∑  

where ijn  represents the number of times the patterns are 

predicted by classifier g  to be in class j  when they really 
belong to class i . The diagonal corresponds to the correctly 
classified patterns and the off-diagonal to the mistakes in the 
classification task. 

Let us denote the number of patterns associated with class 

i  by 
1

, 1, ,
Q

i ij
j

f n i Q
=

= =∑ … . We start by defining two scalar 

measures that take the elements of the confusion matrix into 
consideration from different points of view. Let /i ii iS n f=  
be the number of patterns correctly predicted to be in class i  
with respect to the total number of patterns in i  (sensitivity 
for class i ). Therefore, the sensitivity for class i  estimates 
the probability of correctly predicting a class i  example. 
From the above quantities we define the sensitivity S  of the 
classifier as the minimum value of the sensitivities for each 
class: 

{ }; 1, ,iS mín S i Q= = …  
We define the correct classification rate or accuracy C   

1
(1/ )

Q

jj
j

C N n
=

= ∑ , 

that is the rate of all the correct predictions.  
Specifically, we consider the two-dimensional measure 

( , )S C  associated with classifier g . The measure tries to 
evaluate two features of a classifier: global performance in 
the whole dataset and the performance in each class. We 
represent the sensitivity S  on the horizontal axis and 
accuracy C  on the vertical axis. One point in ( , )S C  space 
dominates another if it is above and to the right, i.e. it has 
more accuracy and greater sensitivity.  

Next, we show the relationship between S  and C .  
Proposition 1. 
Let us consider a Q -class classification problem. Let C  

and S  be respectively the accuracy and the sensitivity 
associated with a classifier g , then ( ) *1 1S C S p≤ ≤ − − , 

where *p  is the minimum of the estimated prior 
probabilities.  

Proof. 
We begin by proving the upper bound. We will denote by 

J  the class with the minimum of the prior probabilities. 
From the definitions of accuracy and sensitivity, and taking 



 
 

into account that 
1

Q

j
j

f N
=

=∑  and * /Jp f N= , we see that: 

   

( )

1 1

1 1 1

Q Q
jj j j jJ

j j
j j j Jj

jJ J J J

j J

n f f ff
C S S S

f N N N N

ff f f f
S S S

N N N N N

= = ≠

≠

= = = + ≤
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∑ ∑ ∑
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         (1)  

On the other hand, the lower bound can be obtained 

 
1 1 1 1

1 Q Q Q Q
ii i i i

ii i
i i i ii

n f f f
C n S S S

N f N N N= = = =
= = = ≥ =∑ ∑ ∑ ∑          (2) 

and according to (1) and (2), we conclude that 
( ) *1 1S C S p≤ ≤ − − .              ▄ 

 
Therefore, each classifier will be represented as a point in 

the shaded region in Figure 1. Several points in ( , )S C  space 
are important to note. The lower left point (0,0)  represents 
the worst classifier and the optimum classifier is located at 
the ( )1,1  point. Furthermore, the points on the vertical axis 
correspond to classifiers that are not able to predict any point 
in a concrete class correctly. Note that it is possible to find 
among them classifiers with a high level of accuracy, 
particularly in problems with small *p . 

 
From the concrete shape of the region we can make the 

following comments. First of all, observe that an increase in 
accuracy C  does not imply an increase in sensitivity S . 
Reciprocally, an increase in sensitivity S  does not mean an 
increase in accuracy C . On the other hand, it should be 
noted that for a fixed value of accuracy C , a classifier will 
be better when it corresponds to a point nearer to the 
diagonal of the square.  

When the number of classes increases or the problem is 
highly imbalanced, the quantity * / 1/Jp f N Q= ≤  
decreases in both cases, and the straight line which defines 
the upper border of the feasible set in ( , )S C  space tends to 
be horizontal and so the range of S  values will be large 

even for high values of C . In these conditions the use of C  
as the only measure will probably be inadequate as it hides 
many different possibilities for S . These comments show us 
that the sensitivity versus accuracy measure can be 
especially useful in problems concerning imbalance or when 
there is a great number of classes, and confirm again the 
inadequacy of accuracy in these situations. 

Finally, it is possible to prove that each point in the 
shaded region in Figure 1 corresponds to a concrete 
classifier (confusion matrix). As a consequence, the bounds 
previously stated in Proposition 1 can not be improved. 

III. EVOLUTIONARY ALGORITHMS AND FITNESS FUNCTIONS 
FOR CLASSIFICATION PROBLEMS 

A. Base Evolutionary Algorithm 
In this section we consider an evolutionary algorithm that 

tries to move the classifier population towards the optimum 
classifier located in the ( )1,1  point in the ( , )S C  space. We 
think an evolutionary algorithm could be an adequate 
scheme that allows us to improve the quality of the 
classifiers, measured in terms of accuracy and sensitivity, 
directing the solutions towards the ( )1,1  point. 
The classifier chosen was the standard multilayer perceptron 
MLP and an evolutionary neural network algorithm was 
applied to estimate the structure and learn the weights of the 
neural network models. The basic framework of the 
evolutionary algorithm is the following: the search begins 
with an initial population of neural networks and the 
population is updated in each iteration using a population-
update algorithm which evolves both the structure and the 
weights. The population is subjected to the operations of 
replication and mutation. Crossover is not used due to its 
potential disadvantages in evolving artificial networks [4]. 
With these features the algorithm falls into the class of 
evolutionary programming [5]. 

The general structure of the EA is the following: 
(1) Generate a random population of size N . 
(2) Repeat until the stopping criterion is fulfilled 

(a) Calculate the fitness of every individual in the 
population. 

(b) Rank the individuals with respect to their fitness. 
(c) The best individual is copied into the new population. 
(d) The best 10% of population individuals are replicated 

and substitute the worst 10% of individuals.  
Over that intermediate population we: 
(e) Apply parametric mutation to the best ( )%mp  of 

individuals. 
(f) Apply structural mutation to the remaining 

(100 )%− mp  of individuals. 
 Parametric mutation is accomplished for each weight jiw  

of the neural network with Gaussian noise 
( 1) ( ) ( )ji jiw t w t tξ+ = + , where ( )tξ  represents a one-

dimensional normally distributed random variable. The 
variance of the normal distribution is updated throughout the 

 
Fig. 1.  Feasible region in the two-dimensional ( , )S C  space for a 
concrete classification problem. 



 
 

evolution of the algorithm applying the simplest heuristic 
1/5 success rule of Rechenberg [6]. On the other hand, 
structural mutation implies a modification in the neural 
network structure and allows explorations of different 
regions in the search space while helping to keep up the 
diversity of the population. There are five different structural 
mutations: node deletion, connection deletion, node addition, 
connection addition and node fusion. These five mutations 
are applied sequentially to each network. For more details 
about the general structure of the EA and the parametric and 
structural mutations the readers can see [7, 8]. 

The parameters used in the evolutionary algorithm are 
common for the six problems. We have considered the 
maximum number of hidden nodes to be 6m = . The number 
of nodes that can be added or removed in a structural 
mutation is within the [ ]1, 2  interval. The number of 
connections that can be added or removed in a structural 
mutation is within the [ ]1,c  interval, where c  is a third of 
the number of connections in the model. Parametric 
mutation is applied to the best ( 10)%=mp  of individuals. 
The stop criterion is reached when the following condition is 
fulfilled: for 20 generations there is no improvement either 
in the average performance of the best ( )%mp  of the 
population or in the fitness of the best individual. 

B. Fitness functions 
The algorithm will be evolved with the four fitness 

functions described below: 
• The accuracy C  used as the standard fitness function 

in classification algorithms. 
• The cross-entropy error function E  or Q-class 

multinomial deviance [9] given by:  

              ( )( )

1 1

1( ) log ,
QN

l
n l n l

n l
E y h

N = =
= − ∑∑θ x θ                    (3) 

 where ( ),l lh • θ  are the softmax activation functions, 

1( ,..., )Q=θ θ θ the corresponding parameters and 

{ }( , )n nD = x y  the training dataset. 

• The sensitivity S  of the classifier as the minimum 
value of the sensitivities for each class 

{ }; 1, ,iS mín S i Q= = … . 

• The area A. Given a classifier g  with accuracy C  and 
sensitivity S , we build the following scalar measure 
associated to g : 

2 * 21( , ) (1 )(1 ) (1 ) (1 )
2

A S C S C C p S = − − − − − −   

  The ( , )A S C  function corresponds to the area of the 
region depicted in Figure 2. Observe that the global 
minimum of ( , )A S C  is reached in the (1,1)  optimum 
classifier point. Since 

*( 1) 1 0, 0A Ap S C S C
S C

∂ ∂= − + − < = − <
∂ ∂

, 

 an increase in C  implies a decrease in A  and also an 
increase in S  implies a decrease in A . 

 
C. Two-Stage Evolutionary Algorithm 

As we will see in the next section, the results obtained 
with the different fitness functions suggest the combination 
of the entropy and area ( , )A S C  as fitness functions in a two-
stage evolutionary algorithm. We run the same previously 
explained evolutionary neural network algorithm in two 
stages, changing the fitness function using two sequential 
functions, the entropy, E , for the first step and the area, A , 
for the second one, and adjusting some of the parameters at 
each stage. This methodology is called  E A+ : 
1) The first stage of the algorithm uses the cross-entropy 

fitness function. Exploration is favored by considering a 
high population size ( 1000=N ) and a very extensive 
structural mutation (100 90mp− = ). 

2) When the stop condition is fulfilled, the second stage of 
the algorithm starts and the fitness function used for 
evaluating individuals changes to the A  function. We 
select this function because it is able to improve the 
sensitivity of the classifiers without losing their 
accuracy levels. The best 100 individuals resulting from 
the first stage are selected, forming the initial 
population of the second stage. In this manner, the 
population size is reduced ( 100=N ) together with the 
percentage of structurally mutated individuals 
(100 10− =mp ), performing an exploitation task. The 
second stage of the algorithm is run for a maximum of 
100 generations, instead of considering the previously 
mentioned stop criterion. 

 
 

IV. EXPERIMENTS 
We consider six datasets with different features taken  

from  the  UCI  repository [10] (see Table I). The 
experimental design for the six classification benchmark 
problems was conducted using a stratified holdout cross-

 
Fig. 2.  Area above an evaluated classifier ( ( , )A S C  function). 



 
 

validation procedure, where approximately 75% of the patterns 
were randomly selected for the training set and the remaining  
25% for the test set.  

The experiments were conducted using a software 
package developed in JAVA by the authors, as an extension 
of the JCLEC framework (http://jclec.sourceforge.net/) [11]. 
The base evolutionary neural network algorithm is available in 
the non-commercial JAVA tool named KEEL 
(http://www.keel.es) [12] 

We carry out two experiments. In the first one, we run the 
evolutionary algorithm with the fitness functions 
(accuracy, C , entropy, E , sensitivity, S , and area ( , )A S C ) 
and we compare the results obtained for each dataset from 
the perspective of accuracy and sensitivity.  Our first aim is 
to show that different fitness functions in the evolutionary 
algorithm can obtain diverse results in the ( , )S C  space. 
Table II shows the statistical results (mean and standard 
deviation in 30 executions of the algorithm). From the 
analysis of the results obtained, we can conclude the 
following:  
• Accuracy C  generally guides the algorithm towards 

regions in the ( , )S C  space with high C  and low 

sensitivity S , especially for datasets with lower *p  
(Balance, Dermatology and Lymphography). The results 
confirm that the accuracy is not a robust fitness function 
to obtain classifiers with a high level of classification in 
each class. This fact has been already shown in highly 
imbalanced problems. However, we show that it is also 
true even for less imbalanced datasets such as Pima and 
German.  

• The sensitivity fitness function S  generally obtains 
classifiers with a better sensitivity level than the fitness 
accuracy C , but at a lower accuracy level. This fitness 
function can be extremely demanding in very imbalanced 
problems or those with a lot of classes (see Dermatology 
or Lymphography) and obtains an acceptable 
performance in two class problems (see Pima and 
German). 

• The entropy reaches regions in the ( , )S C  space with 
high C  and an acceptable sensitivity S  level. Several 
studies prove that the entropy has a greater robustness 
than accuracy for classification problems [9],[13]. Our 
results confirm this fact from a different point of view.    

• The area A  generally obtains better sensitivity levels 
than other fitness functions, but slightly lower accuracy 
levels.  

The second experiment is aimed to evaluate the proposed 
two-stage evolutionary algorithm. Table II includes the 
results of the two-stage algorithm ( E A+ ) for the six 
datasets. A graphical analysis of the behaviour of the two-
stage algorithm is presented in the Figures 3 and 4, where 
the best 100 individuals of the population in one execution 
are depicted in the ( , )S C  space for the Balance training and 
test sets, respectively. Observe that the entropy moves the 

algorithm forward the vertical direction in the first stage, 
obtaining models with a good global classification level 
without significantly reducing the sensitivity, while the 
second stage moves the population forward the horizontal 
one, improving the sensitivity levels.  

 

 
In order to determine the best fitness function of our 

evolutionary algorithm function (in the sense of its influence 
on the accuracy C  and sensitivity S  in the test dataset), the 
ANalysis Of the VAriance (ANOVA) statistical method or 
the non parametric Kruskal-Wallis test were used, depending 
on the satisfaction of the normality hypothesis of C and S  
values. Based on the hypothesis of normality, ANOVA 
examines the effects of some quantitative or qualitative 
variables (called factors) on one quantitative response. For 
example, in our case, the linear model for C  is given by:  

+      ij i ijC F eµ= +  
for 1, 2,3, 4,5i =  and 1,2,...,30j = . The factor iF   analyzes 
the effect over the C of the i -th level of this factor, where 

iF  represents the fitness function used in the algorithm, with 
levels: ( 1)i =   for C  fitness function, ( 2)i =  for A , 
( 3)i =   for S , ( 4)i =  for E  and ( 5)i =  for the E A+  

 
Fig. 4.  Best 100 individuals before and after the second stage of the 
E+A algorithm for the Balance test set. 

Fig. 3.  Best 100 individuals before and after the second stage of the 
E+A algorithm for the Balance training set. 



 
 

methodology. The term µ  is the fixed effect that is common 
to all the populations. The term ijke  is the influence of 
everything that could not be assigned on the result, or the 
effect of random factors. In this way, 150 simulations were 
carried out, corresponding to all the possible application 
combinations of the five levels for the first factor. The 
results of the ANOVA analysis for test C  values show that 
for all datasets the fitness function effect is statistically 
significant at a 5% level of significance  (see the first row in 
table III). For the Newthyroid dataset, the result of the 
Kruskal-Wallis test presents the same conclusion 
( 0.013− =p value ).  The results of the ANOVA analysis for 
S  show that for Balance, German and Pima datasets, the 
fitness function effect is statistically significant at a 5% level 
of significance (see the third row in table III). For 
Dermatology and Newthyroid datasets, the result of the 
Kruskal-Wallis test presents the same conclusion (with 

0.000− =p value  and 0.004− =p value , respectively).   
In order to determine whether there are significant 

differences among the various fitness functions used in the 
EA and under the normality hypothesis, we perform a post 
hoc multiple comparison test of the average C  and S  
obtained with the different levels of each factor. First, we 
carry out a Levene test ([14], [15]) to evaluate the equality 
of variances. If the hypothesis of the equality of variances is 
accepted, we perform a Tukey test [15] to rank the means of 
each level in the factor. Our aim is to find the level of each 
factor whose average fitness is significantly better than the 
average fitness of the rest of the levels in the factor. If the 
results of the test of Levene  reject the equality of covariance 
matrixes, we perform a Tamhane test [16] instead of a Tukey 
test. Table III shows the results obtained (in the second row 
for G  and the fourth row for S ) following the above 
methodology. 

If we analyze the average results for accuracy C , we can 
observe that E A+  methodology obtains results that are 
better than or similar to those obtained with the entropy E  
fitness function in Dermatology and Lymphography 
datasets, and higher results than those obtained with the 
other fitness functions for all datasets except German. On 
the other hand, the results of average sensitivity S show that 
the E A+  methodology obtains a performance that is better 
than or similar to the performance obtained with the A  and 
S  fitness functions, and a performance that is greater than 
that obtained with the E  and with C  fitness functions. 
 

Under the no-normality hypothesis, we use the Mann-
Witney´s pair-wise test, where we compare the E A+  
methodology against the fitness function A  using the 
average values of S  and concluding that significant 
differences exist between the two methodologies in favor of 
E A+  for Dermatology dataset ( 0.000− =p value ) and in 
favor of A  for Newthyroid dataset ( 0.001− =p value ). 

The Lympography dataset deserves a special mention. 

This is a very hard classification problem for all 
methodologies. Although the accuracy rate is acceptable, the 
sensitivity level is very low due to the minority class with 
only 2 patterns. This case suggests undertaking, as future 
work, the  integration of resampling techniques, such as 
SMOTE [17], into our methodology to deal with highly 
imbalanced problems. Finally, it is worthwhile to highlight 
that the ( , )S C   approach is independent of the evolutionary 
algorithm and the base classifier used. 

V. CONCLUSIONS 
 We propose a new approach to deal with multi-class 

classification problems. Assuming that a good classifier 
should combine a high classification rate level in the global 
dataset with an acceptable level for each class, we consider 
the traditionally used accuracy C  and the minimum of the 
sensitivities of all classes S . The sensitivity versus accuracy 
pair ( , )S C  expresses two features associated with a 
classifier: global performance C  and the rate of the worst 
classified class S .  From this perspective, we observe the 
behaviour of different fitness functions such as the accuracy, 
entropy, sensitivity and area in an evolutionary neural 
network scheme in classification problems. From this 
analysis, we present a two-stage evolutionary algorithm with 
the entropy and area fitness functions, which is applied to 
solve six benchmark classification problems. The two-stage 
algorithm obtains promising results, achieving a high 
classification rate level in the global dataset with an 
acceptable level of accuracy for each class. 

In our opinion, the ( , )S C   approach reveals a new point of 
view for dealing with multi-class classification problems. 
For instance, some suggestions for future research are the 
following: to study other fitness functions based on the 
( , )S C   measures, to propose a multi-objective approach 
considering both S andC functions, to use other types of 
base classifiers, or to incorporate resampling techniques for 
highly imbalanced problems. 
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TABLE II 
STATISTICAL RESULTS FOR THE DIFFERENT APPROACHES CONSIDERED IN THE SIX DATABASES 

Dataset Fitness (%)C  (%)S  Dataset Fitness (%)C  (%)S  

C  91.79±1.03 8.33±14.64 C  80.45±5.25 0.00±0.00 
A  86.18±6.44 72.34±19.62 A  77.12±5.80 4.67±17.81 
S  80.19±9.31 66.53±19.18 S  68.83±8.86 1.67±9.13 
E  94.53±1.51 48.00±14.00 E  82.88±4.51 2.67±14.61 

Balance 

+E A  94.87±2.22 77.54±11.74 

Lymphography 

+E A  82.16±5.62 5.50±20.94 
C  82.34±4.25 4.33±13.31 C  95.86±3.97 79.47±19.67 
A  81.47±6.28 17.87±28.27 A  96.42±3.22 84.67±13.31 
S  20.66±12.07 2.48±5.52 S  93.02±5.95 78.51±13.06 
E  97.11±1.95 80.56±10.38 E  94.57±2.23 74.66±9.72 

Dermatology 

+E A  97.25±1.57 84.82±9.40 

Newthyroid 

+E A  95.49±1.73 73.33±9.94 
C  71.11±1.96 31.11±6.91 C  76.46±2.37 49.45±8.05 
A  67.67±2.30 63.40±3.92 A  72.15±1.88 67.56±3.08 
S  68.11±2.23 63.86±3.87 S  72.24±2.62 67.01±3.77 
E  72.91±1.89 45.78±7.13 E  78.63±1.39 58.21±2.99 

German 

+E A  69.31±2.12 65.51±3.26 

Pima 

+E A  76.74±1.81 72.69±3.26 
Different fitness functions determine the different methodologies: Accuracy ( C ), Area ( A ), Sensitivity ( S ), 

Entropy ( E ), and Two Stages algorithm ( E A+ ). 

TABLE I 
DATASETS USED FOR THE EXPERIMENTS 

Dataset Size #Inputs #Classes Distribution *p  

Balance 625 4 3 (288,49,288) 0.0784 
Dermatology 366 34 6 (112,61,72,49,52,20) 0.0546 
German 1000 61 2 (700,300) 0.3000 
Lymphography 148 38 4 (2,81,61,4) 0.0135 
Newthyroid 215 5 3 (150,35,30) 0.1395 
Pima 768 8 2 (500,268) 0.3490 

 



 
 

 
 

TABLE III 
P-VALUES OF THE SNEDECOR´S F ANOVA I TEST AND RANKING OF AVERAGES OF THE TUKEY, TAMHANE OR K-W STATISTICAL MULTIPLE 

COMPARISON TESTS FOR THE ACCURACY ( C ) AND SENSITIVITY ( S ) IN THE TEST SETS USING THE FIVE DIFFERENT FITNESS FUNCTIONS IN THE 
EVOLUTIONARY ALGORITHM 

 Balance Dermatology German Lymphography Newthyroid Pima 

C  
F or K-W test 
( −p value ) 

0.000 (*) 0.000 (*) 0.000 (*) 0.000 (*) 0.013 (*) 
K-W 

0.000 (*) 

Ranking of 
averages 

µE+A≥µE>µC> 
µA≥µS 

µE+A≥µE>µC≥ 
µA>µS 

µE>µC>µE+A> 
µS≥µA 

µE≥µE+A≥µC≥ 
µA>µS 

µE>µA, µE+A>µA 
_ 

µE>µE+A≥µC> 
µS≥µA 

S  
F or K-W test 
( −p value ) 

0.000 (*) 0.000 (*) 
K-W 

0.000 (*) 0.653 
K-W 

0.004 (*) 
K-W 

0.000 (*) 

Ranking of 
averages 

µE+A≥µA≥µS> 
µE>µC 

_ µE+A≥µS≥µA> 
µE>µC _ _ µE+A>µA≥µS> 

µE>µC 
(*) Statistically significant differences 
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